演化机器学习

演化机器学习是人工智能的一个子领域,它结合了演化算法和机器学习的原理。它旨在通过模仿自然演化过程来创建智能系统。在演化机器学习中,候选解决方案群体通过选择、交叉和突变等过程,经过多代演化。这种迭代过程可使系统随着时间的推移不断适应并提高性能。通过利用演化的力量,演化机器学习可以解决复杂的优化和学习问题,使其适用于数据挖掘、机器人和优化等领域的各种应用。
  • 课题组论文
  • 1 Yu Zhou Yingyu Peng Ruiqi Wang Dandan Yu
    Feature Selection for High-Dimensional Data Based on a Multi-objective Particle Swarm Optimization with Self-adjusting Strategy Pool
    Neural Computing for Advanced Applications( NCAA 2022 ) Link
    2 Yu Zhou Hainan Guo Junnan Ma Ruiqi Wang
    Feature library-assisted surrogate model for evolutionary wrapper-based feature selection and classification
    Applied Soft Computing( ASOC ) Link Code
    3 Yu Zhou Yan Qiu Sam Kwong
    Region Purity-based Local Feature Selection: A Multi-Objective Perspective
    IEEE Transactions on Evolutionary Computation ( TEVC ) Link Code
    4 Yu Zhou Jiping Lin Hainan Guo
    Feature subset selection via an improved discretization-based particle swarm optimization
    Applied Soft Computing ( ASOC ) Link
    5 Yu Zhou Junhao Kang Sam Kwong Xu Wang Qingfu Zhang
    An evolutionary multi-objective optimization framework of discretization-based feature selection for classification
    Swarm and Evolutionary Computation ( SWEVO ) Link
    6 Yu Zhou Wenjun ZhangJunhao Kang Xiao Zhang Xu Wang
    A problem-specific non-dominated sorting genetic algorithm for supervised feature selection
    Information Sciences ( INS ) Link Code
    7 Yu Zhou Junhao Kang Hainan Guo
    Many-objective optimization of feature selection based on two-level particle cooperation
    Information Sciences ( INS ) Link Code
    8 Yu Zhou Mengyuan Wu Ke Li Sam Kwong Qingfu Zhang
    Matching-Based Selection With Incomplete Lists for Decomposition Multiobjective Optimization
    IEEE Transactions on Evolutionary Computation ( TEVC ) Link
    9 Yu Zhou Xiao Zhang Qingfu Zhang Victor C. S. Lee Minming Li
    Problem Specific MOEA/D for Barrier Coverage with Wireless Sensors
    IEEE Transactions on Cybernetics( TCYB ) Link